Kaisa_2012_3_photo by Veikko Somerpuro

9.12.2019 at 09:00 - 14.1.2020 at 23:59


Here is the course’s teaching schedule. Check the description for possible other schedules.

Tue 14.1.2020
12:15 - 13:45
Wed 15.1.2020
12:15 - 13:45
Tue 21.1.2020
12:15 - 15:45
Wed 22.1.2020
12:15 - 13:45
Tue 28.1.2020
12:15 - 15:45
Wed 29.1.2020
12:15 - 13:45
Tue 4.2.2020
12:15 - 15:45
Wed 5.2.2020
12:15 - 13:45
Tue 11.2.2020
12:15 - 15:45
Wed 12.2.2020
12:15 - 13:45
Tue 18.2.2020
12:15 - 15:45
Wed 19.2.2020
12:15 - 13:45
Tue 25.2.2020
12:15 - 15:45
Wed 26.2.2020
12:15 - 13:45
Fri 28.2.2020
12:15 - 15:45


Optional for students specializing in geoinformatics and those in the geography degree programme.

Geography programme is responsible for the course


The course is available to students from other degree programmes, but the number of students may be limited. Priority is given first to students specializing in geoinformatics, then geography and then students of other degree programmes.

Remote Sensing 1

Imaging Spectroscopy

Remote Sensing 2 course provides the students: 1) familiarity with the recent developments in remote sensing methods, and skills to search further knowledge from scientific literature and relevant forums; 2) skills of advanced image processing and interpretation techniques to characterize land cover and land cover change; 3) ability to develop replicable image processing and analysis paths; 4) skills to apply remote sensing methods in MSc thesis research, and ability to communicate the results following the scientific and technical conventions in the field.

The recommended time for completion is in 1. year of M.Sc. Studies

The course is offered in spring term, period 4.

The course builds on Remote sensing 1, and introduces the students with topical issues and methods in remote sensing of land cover and vegetation, and improves students’ ability to use remote sensing methods in their MSc theses and research. The lecture topics include: review of topical issues in remote sensing of land cover and vegetation; pre-processing satellite imagery; estimation of vegetation biophysical attributes; basics of lidar data and its use for characterization of vegetation structure; and methods in land cover change detection and modelling. Topics for practical work include: satellite image processing and analysis in R software environment; forest attribute mapping using airborne lidar.

A list of recommended journal articles is provided on the course Moodle.

The course is organized in a weekly lecture + exercise session format. The exercise sessions allow students to develop their remote sensing skills and receive help from course assistants. Some independent work is also expected. In addition, students keep learning diary to summarize, analyze, comment and reflect on the content of the course.

The grade is based on learning diary and reports of the assignments, evaluated on scale 0-5.

Lectures (16 h), practical exercises (32 h), learning diary, individual work