### Instruction

Name Cr Method of study Time Location Organiser
Mathematics of infectious diseases 10 Cr Lecture Course 5.9.2019 - 15.12.2019
Mathematics of infectious diseases 10 Cr Lecture Course 6.9.2017 - 13.12.2017

### Target group

Optional course.

Master's Programme in Life Science Informatics is responsible for the course.

The course belongs to the Mathematics and Applied mathematics module.

The course is available to students from other degree programmes.

### Prerequisites

BSc courses on differential equations, linear algebra, probability theory

### Learning outcomes

Modelling the dynamics of infectious diseases using a variety of mathematical techniques (differential equations, renewal equations, stochastic models, network models).

### Timing

Recommended time/stage of studies for completion: 1. or 2. year

Term/teaching period when the course will be offered: varying

### Contents

This course is an introduction to mathematical modelling of the dynamics of infectious diseases in human and other populations. The topics include the basic models of epidemics (e.g. SIR); the basic reproduction number (R0); vaccination; the final size of an epidemic; persistence; the evolution of pathogens; diseases in small communities; time to extinction; epidemics in structured host populations; multi-level mixing (households); epidemics on networks. The course is given as a book-reading course based on a textbook that approaches much of the material via problem-solving. Lectures and exercise classes are combined; next to traditional lectures, also students present sections of the book and discuss the solutions of the problems.

### Activities and teaching methods in support of learning

Lectures, student presentations, problem solving

### Study materials

O. Diekmann, H. Heesterbeek and T. Britton: Mathematical Tools for Understanding Infectious Disease Dynamics. Princeton University Press, 2012; ISBN-10: 0691155399.

### Assessment practices and criteria

Exam and course activity (presentations and problem solving), Course will be graded with grades 1-5

### Completion methods

Exam, other methods will be described later