Kaisa_2012_3_photo by Veikko Somerpuro

22.9.2019 at 08:00 - 12.10.2019 at 23:59



NB: This page concerns online course held in English, to see information about the Finnish lecture based equivalent course, please change language to Finnish.

Course is part of bachelor degree program in mathematical sciences and therein intermediate studies.

Either the collection of the three Calculus courses

  • MAT11006: Calculus 1A: Limits and Differentiation
  • MAT11007: Calculus 1B: Integration
  • MAT11008: Advanced Calculus

or the collection of the three Finnish analysis courses

  • MAT11003: Raja-arvot
  • MAT11004: Differentiaalilaskenta
  • MAT11005: Integraalilaskenta

Students need to be fluent with finding limits, derivatives and integrals as well as proving results based on definitions, especially producing epsilon and delta type proofs.

The Finnish lecture based version MAT21002 Sarjat, in period I is equivalent to this course.

After successfully completing this course students will

  • Be familiar with concepts of infinite sequences and series
  • Understand the principles of how a sum of infinite series is formed
  • Recognize different types of series
  • Understand what is meant by convergence and divergence of a sequence and series
  • Master various tests for convergence of series and discern situations in which to apply them
  • Represent elementary functions, such as trigonometric functions and logarithms, as series, find domains in which these series converge, and use these series representations to approximate values of functions

This online course takes place in period IV.

Course covers the following main topics

  1. Sequences and Series
  2. Convergence
  3. Geometric Series, p-series
  4. Alternating Series
  5. Convergence Tests: Integral, Comparison, Ratio, Root, Absolute Convergence
  6. Power Series, Abel’s Theorem, Radius of Convergence
  7. Maclaurin and Taylor Polynomials and Series, Approximating Functions

All necessary study material can be found in the course area. Standard Calculus text books, such as Adams' or Stewart's Calculus books can be used as side material among others.
The parts covering Series in the Finnish “Analyysia reaaliluvuilla” (Harjulehto, Klén, Koskenoja) can be recommended for Finnish speaking students (though language of communication is always English).
NB: sequence of covering topics in these books may vary from that in the course.

Studying in this course follows a weekly cycle. Each week students are expected to:

  1. Watch the prerecorded lectures or read the text allocated for the next workshop at the class Moodle site.
  2. Solve quiz problems. They will help to prepare for the workshops.
  3. Submit solutions to workshop problems by Wednesday evening.
  4. Grade and give feedback to other students’ workshop submissions by Sunday evening.
  5. Also ask questions, hints for solving problems etc. in the discussion forum.

Continuous formative assessment takes place throughout the course by weekly quizzes and workshops. These will give homework extra credit maximum of 5 points.

Final paper and pencil exam with maximum of 30 points will measure comprehensively the learning goals.

Scale 1-5 of grades will be used. Passing course with grade 1 will require approximately half of the points of the exam and for the best grade approximately 5/6 of the exam points are required. Homework extra credit points will be added to the exam points.

This is an online course. All course material and activities can be found on the online course area. There is a final proctored paper and pencil exam at the end of the course.

Matti Pauna

Tässä kurssipaketilla tarkoitetaan toisiinsa kiinteästi liittyviä kursseja, jotka eivät kuitenkaan muodosta opintokokonaisuutta.

Seuraavat kurssipaketit ovat päällekkäisiä. Tämä tarkoittaa sitä, että voit sijoittaa matematiikan opintoihisi vain yhden seuraavista paketeista. Huomaa lisäksi, että vaikka kurssipaketit ovat sisällöllisesti päällekkäisiä, yksittäiset kurssit eivät vastaa toisiaan.

Kurssipaketti 1

  • MAT11003 / 57116 Raja-arvot, 5 op
  • MAT11004 / 57117 Differentiaalilaskenta, 5 op
  • MAT11005 / 57118 Integraalilaskenta, 5 op
  • (MAT21002 / 57119 Sarjat, 5 op)

Vastaavat vanhat kurssit

  • 57016 Analyysi I 10 op (Raja-arvot, Differentiaalilaskenta)
  • 57017 Analyysi II 10 op (Integraalilaskenta, Sarjat)

Kurssipaketti 2

  • MAT11006 Calculus 1A: Limits and Differentiation
  • MAT11007 Calculus 1B: Integration
  • MAT11008 Advanced Calculus
  • (MAT21002 Series, 5 op)

Vastaavat vanhat kurssit Calculus I 8 op, Calculus II 8 op ja Advanced Calculus 6 op. Vanha kurssi Analyysin peruskurssi 10 op vastaa karkeasti kursseja Calculus 1A ja Calculus 1B.

Kurssipaketti 3 – ei pääaineopiskelijoille (taloustieteen opiskelijoille)

  • MAT11010 Matemaattinen analyysi I, 5 op
  • MAT11011 Matemaattinen analyysi II, 5 op
  • MAT11012 Matemaattinen analyysi III, 5 op
  • MAT11013 Matemaattinen analyysi IV, 5 op

Vastaavat vanhat kurssit Matemaattisen analyysin kurssi 10 op ja Matemaattisen analyysin jatkokurssi 10 op