Pintojen leikkauskäyrät, Ilmari Lehmusoksa 2017

Vektorianalyysi I syksyllÄ 2017

Kurssi on päättynyt. Kurssin luennot ovat Materiaalit-osassa.
Kiitos luennolle osallistuneille!

Enrol

Timetable

Here is the course’s teaching schedule. Check the description for possible other schedules.

DateTimeLocation
Tue 5.9.2017
14:15 - 16:00
Thu 7.9.2017
12:15 - 14:00
Tue 12.9.2017
14:15 - 16:00
Thu 14.9.2017
12:15 - 14:00
Tue 19.9.2017
14:15 - 16:00
Thu 21.9.2017
12:15 - 14:00
Tue 26.9.2017
14:15 - 16:00
Thu 28.9.2017
12:15 - 14:00
Tue 3.10.2017
14:15 - 16:00
Thu 5.10.2017
12:15 - 14:00
Tue 10.10.2017
14:15 - 16:00
Thu 12.10.2017
12:15 - 14:00
Tue 17.10.2017
14:15 - 16:00
Thu 19.10.2017
12:15 - 14:00

Other teaching

11.09. - 16.10.2017 Mon 14.15-16.00
Ritva Hurri-Syrjänen
Teaching language: Finnish
12.09. - 17.10.2017 Tue 10.15-12.00
Ritva Hurri-Syrjänen
Teaching language: Finnish
13.09. - 18.10.2017 Wed 14.15-16.00
Ritva Hurri-Syrjänen
Teaching language: Finnish
14.09. - 19.10.2017 Thu 10.15-12.00
Ritva Hurri-Syrjänen
Teaching language: Finnish
15.09. - 20.10.2017 Fri 10.15-12.00
Ritva Hurri-Syrjänen
Teaching language: Finnish

Material

RHS:n luennot.

Koealue on näiden luentojen kattama alue.

Tasks

Laskuharjoituksista saatavat hyvityspisteet

Conduct of the course

Vektorianalyysi I kurssin tentti on 23.10.2017. Paikalla tenttisalissa tulisi olla klo 12. Koealue on luentojen kattama alue reaaliarvoisten vektorimuuttujan funktioiden differentiaalilaskennasta. Luennot ovat Materiaalit osassa.

Kokeessa saa olla mukana kynät, kumi ja viivoitin. Kokeessa ei ole sallitua käyttää elektronisia laitteita eikä taulukkokirjaa.

.

Description

Compulsory

Derivatives and integrals of one variable, basic linear algebra

The student is able to master the basic concepts of the differential and integral calculus of several variables. After completing the course the student is able to apply the theory to solve simple extreme value problems, and is be able to compute simple surface areas and volumes.

- See the competence map ( https://flamma.helsinki.fi/content/res/pri/HY348496).

Second year

I period, and in English in III period, 2019.

The core content of the course is the differeantal calculus of several variables, and the determination of multiple dimensional integrals in Euclidean space. The terms used are applied, for example. to solve extreme value problem. During the course, the gradient, together with its geometric meaning, is introduced. Moreover, solving contrained extremal problems via Lagrange multipliers is discussed, and basics of integration in multi-dimensional space and on surfaces are introduced.

Lecture notes. In Finnish Vektorianalyysi (Limes ry) by Martio, Olli.

See the competence map (https://flamma.helsinki.fi/content/res/pri/HY348496)

Lectures and solving exercises is essential.

Final exam, points from exercises, and quizzes in the beginning of classes,

Weekly lectures and exercise class.