Kuvan tekijä: Ilmari Lehmusoksa, 2017

Kumpula-examsin tiedotteesta: Tenttiin 21.10.2019 tulee ilmoittautua WebOodissa. Kurssi-ilmoittautuminen ei riitä! Ilmoittautuminen sulkeutuu 10 päivää ennen tenttiä.

Maanantaisin klo 10--12 Miika Tuominen on Ratkomossa.

Enrol

Timetable

Here is the course’s teaching schedule. Check the description for possible other schedules.

DateTimeLocation
Thu 5.9.2019
10:15 - 12:00
Fri 6.9.2019
12:15 - 14:00
Thu 12.9.2019
10:15 - 12:00
Fri 13.9.2019
12:15 - 14:00
Thu 19.9.2019
10:15 - 12:00
Fri 20.9.2019
12:15 - 14:00
Thu 26.9.2019
17:15 - 19:00
Fri 27.9.2019
12:15 - 14:00
Thu 3.10.2019
10:15 - 12:00
Fri 4.10.2019
12:15 - 14:00
Thu 10.10.2019
10:15 - 12:00
Fri 11.10.2019
12:15 - 14:00
Thu 17.10.2019
10:15 - 12:00
Fri 18.10.2019
12:15 - 14:00

Other teaching

09.09. - 14.10.2019 Mon 14.15-16.00
Teaching language: Finnish
10.09. - 15.10.2019 Tue 10.15-12.00
Teaching language: Finnish
11.09. - 16.10.2019 Wed 14.15-16.00
Teaching language: Finnish
12.09. - 17.10.2019 Thu 12.15-14.00
Teaching language: Finnish
13.09. - 18.10.2019 Fri 10.15-12.00
Teaching language: Finnish
13.09. - 18.10.2019 Fri 10.15-12.00
Teaching language: Finnish

Material

Kurssimateriaalia, yhdistettyna syksyn 2017 VA1kurssi ja alkuosa syksyn 2017 VA2 kurssista..

Description

Compulsory

Derivatives and integrals of one variable, basic linear algebra

The student is able to master the basic concepts of the differential and integral calculus of several variables. After completing the course the student is able to apply the theory to solve simple extreme value problems, and is be able to compute simple surface areas and volumes.

- See the competence map ( https://flamma.helsinki.fi/content/res/pri/HY348496).

Second year

I period, and in English in III period, 2019.

The core content of the course is the differeantal calculus of several variables, and the determination of multiple dimensional integrals in Euclidean space. The terms used are applied, for example. to solve extreme value problem. During the course, the gradient, together with its geometric meaning, is introduced. Moreover, solving contrained extremal problems via Lagrange multipliers is discussed, and basics of integration in multi-dimensional space and on surfaces are introduced.

Lecture notes. In Finnish Vektorianalyysi (Limes ry) by Martio, Olli.

See the competence map (https://flamma.helsinki.fi/content/res/pri/HY348496)

Lectures and solving exercises is essential.

Final exam, points from exercises, and quizzes in the beginning of classes,

Weekly lectures and exercise class.