Kaisa_2012_3_photo by Veikko Somerpuro

Ilmoittaudu

Aikataulu

Tästä osiosta löydät kurssin opetusaikataulun. Tarkista mahdolliset muut aikataulut kuvauksesta.

PäivämääräAikaOpetuspaikka
Ma 11.9.2017
12:15 - 14:00
Ti 12.9.2017
14:15 - 16:00
Ma 18.9.2017
12:15 - 14:00
Ti 19.9.2017
14:15 - 16:00
Ma 25.9.2017
12:15 - 14:00
Ti 26.9.2017
14:15 - 16:00
Ma 2.10.2017
12:15 - 14:00
Ti 3.10.2017
14:15 - 16:00
Ma 9.10.2017
12:15 - 14:00
Ma 16.10.2017
12:15 - 14:00
Ti 24.10.2017
14:15 - 16:00
Ma 30.10.2017
12:15 - 14:00
Ti 31.10.2017
14:15 - 16:00
Ma 6.11.2017
12:15 - 14:00
Ti 7.11.2017
14:15 - 16:00
Ma 13.11.2017
12:15 - 14:00
Ti 14.11.2017
14:15 - 16:00
Ma 20.11.2017
12:15 - 14:00
Ti 21.11.2017
14:15 - 16:00
Ma 27.11.2017
12:15 - 14:00
Ti 28.11.2017
14:15 - 16:00
Ma 4.12.2017
12:15 - 14:00
Ti 5.12.2017
14:15 - 16:00
Ma 11.12.2017
12:15 - 14:00
Ti 12.12.2017
14:15 - 16:00

Muu opetus

06.09. - 18.10.2017 Ke 10.15-12.00
01.11. - 29.11.2017 Ke 10.15-12.00
13.12.2017 Ke 10.15-12.00
Tuomas Hytönen
Opetuskieli: englanti

Materiaalit

The first part of the course is based on the lecturer's 2015 notes on Elliptic Partial Differential Equations (elliptic.pdf).

The second part of the course is based on new material (green-[month]-[date].pdf). This file will be updated as the course proceeds.

Both parts are put together in the file pde-II-2017.pdf, which also has a table of contents.

Kuvaus

Optional course.

Master's Programme in Mathematics and Statistics is responsible for the course.

The course belongs to the Mathematics and Applied mathematics module.

The course is available to students from other degree programmes.

Mitta ja integraali

Master studies

The regularity theory of second-order elliptic equations with divergence structure, weak solutions and Sobolev inequalities.

Recommended time/stage of studies for completion: 1. or 2. year

Term/teaching period when the course will be offered: varying

Sobolev spaces and De Giorgi-Nash-Moser theory.

Lectures and exercise classes

Exam and excercises, Course will be graded with grades 1-5

Exam, other methods will be described later