Kaisa_2012_3_photo by Veikko Somerpuro

Ilmoittaudu
14.8.2017 klo 08:00 - 14.12.2017 klo 23:59

Aikataulu

Tästä osiosta löydät kurssin opetusaikataulun. Tarkista mahdolliset muut aikataulut kuvauksesta.

PäivämääräAikaOpetuspaikka
To 7.9.2017
10:15 - 12:00
Ma 11.9.2017
12:15 - 14:00
To 14.9.2017
10:15 - 12:00
Ma 18.9.2017
12:15 - 14:00
To 21.9.2017
10:15 - 12:00
Ma 25.9.2017
12:15 - 14:00
To 28.9.2017
10:15 - 12:00
Ma 2.10.2017
12:15 - 14:00
To 5.10.2017
10:15 - 12:00
Ma 9.10.2017
12:15 - 14:00
To 12.10.2017
10:15 - 12:00
Ma 16.10.2017
12:15 - 14:00
To 19.10.2017
10:15 - 12:00
Ma 30.10.2017
12:15 - 14:00
To 2.11.2017
10:15 - 12:00
Ma 6.11.2017
12:15 - 14:00
To 9.11.2017
10:15 - 12:00
Ma 13.11.2017
12:15 - 14:00
To 16.11.2017
10:15 - 12:00
Ma 20.11.2017
12:15 - 14:00
To 23.11.2017
10:15 - 12:00
Ma 27.11.2017
12:15 - 14:00
To 30.11.2017
10:15 - 12:00
Ma 4.12.2017
12:15 - 14:00
To 7.12.2017
10:15 - 12:00
Ma 11.12.2017
12:15 - 14:00
To 14.12.2017
10:15 - 12:00

Muu opetus

13.09. - 18.10.2017 Ke 14.15-16.00
01.11. - 29.11.2017 Ke 14.15-16.00
13.12.2017 Ke 14.15-16.00
Juha Kontinen
Opetuskieli: englanti

Materiaalit

Basic information and lecture notes

Tehtävät

Exercise set 1

Exercise set 2

Exercise set 3

Exercise set 4

Exercise set 5

Exercise set 6

Exercise set 7

Exercise set 8

Exercise set 9

Exercise set 10

Exercise set 11

Exercise set 12

Kuvaus

Optional course.

Master's Programme in Mathematics and Statistics is responsible for the course.

The course belongs to the Mathematics and Applied mathematics module.

The course is available to students from other degree programmes.

E.g. Johdatus logiikkaan II

Master studies

Basic knowledge of dependence logic and team semantics.

Recommended time/stage of studies for completion: 1. or 2. year

Term/teaching period when the course will be offered: varying

Team semantics, dependence logic and its variants

J. Väänänen: Dependence logic (2007)

Lectures and exercise classes

Exam and excercises, Course will be graded with grades 1-5

Exam, other methods will be described later