Myrskyn jälkeen maantiellä on oksia ja tavaraa.

Ilmakehätieteiden maisteriohjelma tutkii muun muassa ilmastonmuutosta ja säiden ääri-ilmöitä. Opintojen avulla ymmärrät paremmin näitä aikamme merkittäviä ilmiöitä, ja saat myös valmiuksia osallistua niistä käytäviin yhteiskunnallisiin keskusteluihin.

Ilmakehätieteiden maisteriohjelma on myös ainoa meteorologeja kouluttava koulutusohjelma Suomessa. 

Opinnot Avoimessa yliopistossa

Ilmakehätieteiden maisteriohjelmasta Avoin yliopisto järjestää seuraavat opintojaksot:

  • Climate change now 2-5 op
  • Leadership for sustainable change 5 op
  • Solutions.now 5 op
  • SystemsChange.now 5 op
  • Statistical tools for climate and atmospheric science 5 op
  • Numerical Meteorology I 5 op
  • Numerical Meteorology II 5 op

Leadership for sustainable change, 5 op

Ilmastonmuutos nyt, 2-5 op

Jakson jälkeen opiskelija:

  • hallitsee perusteet ilmastonmuutoksesta luonnontieteellisenä ilmiönä sekä osaa selittää millä toimilla ilmastonmuutosta voidaan hillitä ja kuinka siihen voidaan sopeutua.
  • osaa katsoa ilmastonmuutosta monesta näkökulmasta ja luoda yhteyksiä ympäristön, talouden ja yhteiskunnan eri osa-alueiden välillä.
  • tunnistaa ilmastonmuutoksen globaalina inhimillisenä ja eettisenä haasteena.
  • reflektoi omaa rooliaan ilmastonmuutoksessa ja osaa soveltaa oppimaansa omalla alallaan.
  • osaa etsiä ratkaisuja ilmastonmuutokseen monipuolisesti.
  • osaa tarkastella eri näkökulmia, ratkaisuja, tiedonlähteitä ja ilmastonmuutoksesta käytävää keskustelua kriittisesti.

Kurssi ei edellytä esitietoja.

Climate change now, 2-5 op

Student can

  • look at climate change from many different perspectives and create connections between them as well as look for solutions to the climate challenge in a variety of ways.
  • reflect on his or her own role in climate change and apply what has been learned on the course to his or her field of study.
  • examine different perspectives, solutions, information sources and the current debate on climate change critically.

No prerequisites required.

Solutions.now, 5 op

Overarching learning goal is being able to mitigate and solve sustainability problems.
1. Systems thinking competence:
Having completed the course, the student is able to understand structure and dynamics of complex
systems related to solving sustainability challenges in a real-life project.
● Student can describe given sustainability challenges from multiple perspectives.
2. Anticipatory competence:
After the course, the student is able to anticipate possible and/or sustainable futures related to
solving practical sustainability challenges.
● Student can apply his/her knowledge in order to predict possible outcomes of sustainability
projects and compare those with alternative scenarios.
● Student is able to manage expectations and anticipated results of projects.
3. Normative competence:
Having completed the course the student is able to differentiate, justify, and apply values and goals
for sustainability.
● Student can approach sustainability challenges from a normative perspective and recognize
the different values guiding the project at hand.
4. Strategic competence:

Having completed the course, the student is able to create transition and intervention strategies to
enact change.
● Student understands the basic principles of project management and can plan and lead a
project from beginning to end.
● Student feels comfortable using different project management tools and understands the
basics of working with companies and other stakeholders.
● Student is able to reflect on, and deal with, possible risks.
5. Interpersonal competence:
After the course, the student has developed his/her communicative and collaborative skills.
● Student is able to organize and manage working in a multi-disciplinary team of individuals.
● Student understands the basics of projects’ internal and external communications.
● Student can apply collaborative working methods in his/her work.

Knowledge of climate change and sustainability, for example from courses: Climate.now and/or Sustainable.now/Leadership for sustainable change.

Sustainable.now, 5 op

1) Opiskelija hahmottaa ilmiölähtöisesti ilmastohaasteen ja kestävän kehityksen haasteista tulevat risteävät, osin ristiriitaiset, tavoitteet sekä tilanteen moniulotteisuuden.

2) Kurssin suoritettuaan opiskelija tuntee ilmastonmuutoksen ja kestävän kehityksen eri tavoitteiden välisiä monitieteisiä yhteyksiä ja hahmottaa erilaisia työkaluja ongelmien ratkaisuun.

3) Opiskelija ymmärtää positiivisuuden ja ratkaisukeskeisyyden sekä yksilöillä olevan globaalin vastuun merkityksen sekä olemassa olevien rakenteiden tarjoamat mahdollisuudet.

Avon yo: SystemsChange.now, 5 op

The student will be familiarise her/himself with basic systems thinking concepts and terminology, specifically related to climate change and related global crises. The course will help the student to analytically approach complex, global phenomena, from the perspective of interconnections of Earth systems and human systems and systemic change. The course will foster the student’s expertise and self-confidence in her/his systems thinking skills.

Climate.now (AYATM302en) or corresponding studies on basics of climate change

Statistical Analysis of Environmental Field Measurements, 5 op

Upon completing the course, the student:

  • understands the concept and applicability of statistical tests and p-values and is able to apply them to a given dataset;
  • is able to perform fundamental statistical analysis of a given dataset;
  • is able to produce clear programming code.

Numerical Meteorology I, 5 op

At end of the course, students should know the principles of the numerical methods used in weather and climate models, and can at practical level write a computer program to numerically solve a shallow-water model, make numerical experiments with the model, and visualize and interpret the results.

Basics of either meteorology or oceanography, and sufficient coding skills - language is a student's choice: Fortran, Matlab, Python, or such like.

Numerical Meteorology II, 5 op

At end of the course, students should know the principles of data assimilation applied in numerical weather prediction (or, numerical prediction of the ocean state), and can at practical level write Extended Kalman Filter in the context of simple linear and nonlinear prediction models (Lorenz 3-parameter model in the non-linear case). Students can make numerical experiments with the prediction system, and visualize and interpret the results.

Some mathematical and statistical aptitude is important, but only sufficient coding skills are really necessary. The coding language is a student's choice: Fortran, Matlab, Python, or such like will do well. For understanding the connection of the topic with numerical weather (ocean) prediction, basics of either meteorology or oceanography are needed. This course is however possible to complete with any background, as long as coding skills and mathematical background are there.

Hakijapalvelut
Opinnoista kiinnostuneiden opintoneuvonta ja ilmoittautumiseen liittyvät asiat
Opiskelijaneuvonta
Avoimessa yliopistossa opiskelevien yleisneuvonta
Eeva-Riitta Koivunen, koulutusasiantuntija
Kysy opintotarjonnasta ja opiskelumuodoista