Samuli Siltanen

Inverse problems is the scientific art of going from effect to cause. This course is the second course on computational inverse problems. We continue from the previous course and take a closer look at X-ray tomography and regularization methods.

Ilmoittaudu
8.10.2018 klo 08:00 - 13.12.2018 klo 23:59

Vuorovaikutus

The course exercises are a MOOC. Join the course platform as soon as possible using the HAKA-login! All the lecture materials will be posted there.

Aikataulu

Tästä osiosta löydät kurssin opetusaikataulun. Tarkista mahdolliset muut aikataulut kuvauksesta.

PäivämääräAikaOpetuspaikka
Ti 30.10.2018
12:15 - 14:00
Ti 30.10.2018
14:15 - 16:00
Ke 31.10.2018
14:15 - 16:00
Ti 6.11.2018
12:15 - 14:00
Ti 6.11.2018
14:15 - 16:00
Ke 7.11.2018
14:15 - 16:00
Ti 13.11.2018
12:15 - 14:00
Ti 13.11.2018
14:15 - 16:00
Ke 14.11.2018
14:15 - 16:00
Ti 20.11.2018
12:15 - 14:00
Ti 20.11.2018
14:15 - 16:00
Ke 21.11.2018
14:15 - 16:00
Ti 27.11.2018
12:15 - 14:00
Ti 27.11.2018
14:15 - 16:00
Ke 28.11.2018
14:15 - 16:00
Ti 4.12.2018
12:15 - 14:00
Ti 4.12.2018
14:15 - 16:00
Ke 5.12.2018
14:15 - 16:00
Ti 11.12.2018
12:15 - 14:00
Ti 11.12.2018
14:15 - 16:00
Ke 12.12.2018
14:15 - 16:00

Materiaalit

Kurssin suorittaminen

You gain credits from this course by completing the online course, Introduction to Computational Tomography, given in 30.10. - 3.12. and passing a home exam. Both, the online course and the home exam, contribute equally to your final grade (0-5 scale). You are required to obtain at least 40 % of the total points from the online course in order to take the exam.

The online course consists of lecture materials (notes, videos etc.) and four weekly exercise sets. There are also weekly lectures and tutorial sessions which you are encouraged to take part. The tutorial sessions are guided teaching events where you can get help to solve exercises of the online course and other course matters.

Kuvaus

Preliminaries: Inverse Problems 1: convolution and deconvolution.

Master's studies

The goals of the course:

(1) understand X-ray tomography as a matrix model,

(2) learn least-squares solution technique and see that it is not enough for tomography,

(3) show how to use SVD to assess the ill-posedness of a tomographic problem,

(4) understand why tomography needs special regularised methods,

(5) write robust Matlab programs for tomographic image reconstruction,

(6) learn how to extend the solution algorithms to large-scale problems using matrix-free methods.

Inverse problems is the scientific art of going from effect to cause.

In medical tomography, the “cause” is the X-ray attenuation coefficient inside a patient. The “effect” is a collection of X-ray images of the patient recorded along several directions of view. Recovering the inner structure of the patient from a set of noisy X-ray images is an inverse problem.

Mathematically, the X-ray images can be seen as a collection of line integrals of a non-negative function. Johann Radon proved in 1917 that a (reasonably regular) planar function can be reconstructed from the knowledge of its integrals along every line. This idea was refined and implemented by Hounsfield and Cormack in the 1960’s and 1970’s, resulting in modern CT scanners used in hospitals every day. And in Nobel Prizes for Hounsfield and Cormack.

Recently there has been growing interest in designing medical X-ray tomography that deliver a smaller radiation dose to the patient than the classical CT scanners. One way to do this is to take fewer X-ray images, but then the inverse problem becomes more ill-posed. Ill-posedness means that the solution is highly sensitive to modelling errors and measurement noise. Robust solution of limited-data tomography problems is based on regularization.

The same mathematical model appears in a variety of tomographic applications, not necessarily based on X-rays. Monitoring the ozone layer can be done tomgraphically using satellite-borne star occultation measurements. Electron microscopy can reveal the structure of molecules once a limited-angle tomography problem is solved in a regularised way. Secret chambers inside the Giza pyramids in Egypt have been found using tomographic imaging based on cosmic muon rays. Neutron tomography can be used for studying large metallic objects.

The course starts by showing how tomographic imaging problems can be modelled using matrices. First, naive reconstruction is attempted computationally using a least-squares solution. This fails because of the ill-posedness of the inverse problem. The source of the difficulties is identified using Singular Value Decomposition (SVD).

The difficulties can be overcome by regularization. Several regularized reconstruction methods are discussed both theoretically and computationally: truncated SVD, generalised Tikhonov regularization, Total Variation regularization, and wavelet-sparsity regularization.

The course has lectures, weekly exercises and an exam. It is possible to continue from this course to Inverse Problems Project Work course (5 credit units).

Samuli Siltanen