Natural Language Generation for News Automation

Week 1: introduction
Mark Granroth-Wilding
NLG for News Automation

Mark Granroth-Wilding:
mark.granroth-wilding@helsinki.fi

- Reading group / seminar
- 7 weeks
- Subject matter
 - Basic NLG grounding
 - Practical NLG systems: focus on news applications
 - NLG literature relating to news automation
 - Technical perspective
Today

- Introduction to traditional NLG (me)
- Allocation of topics to participants
Next week

- Short overviews
 - Each participant: what they plan to present
 - From initial look at literature
- Discuss what we’re interested in
- Journalists’ view
Topics

- Week 3: Goals and architecture of algorithmic journalism
 - What algorithmic journalism can be (or already is) useful for
- Week 4: NLG pipeline for weather reporting
 - Traditional NLG, more detail on specific, much-studied example
- Week 5 & 6: Statistical NLG
 - More up-to-date techniques, text-to-text generation, neural generation
- Week 7: Interaction with journalists
 - How can journalists interact with generation? Review of existing approaches

❖ More detail on course webpage (http://courses.helsinki.fi)
❖ Initial suggested reading
Aims

● Review NLG relevant to news automation
● Study previous work in news automation, technical perspective
● Discuss potential future directions

● First: basic grounding in traditional NLG
● Established architecture and sub-tasks involved
Your tasks

- Decide on a topic
 - After today’s talk
- Short presentation of topic / sub-topic
 - Next week
- Presentation
 - Later sessions
- Abstract
 - Short report on what you presented (1-2 pages)
 - Connect your topic to other topics presented / discussed
- Reference list
 - Relevant literature you found
- Active participation in group
 - Some reading
 - Participation in discussions
Introduction to NLG

- Roughly follow: *Building Natural Language Generation Systems* *(Reiter & Dale, 2000)*
- Out of date, lots of work since
- Architecture is basis for much subsequent work
- Division into sub-tasks commonly used
- Later work: more statistical/machine-learning techniques
 - Maybe a bit today, more in later session
Natural Language Processing

Natural Language Generation & Natural Language Understanding

- Usually not same models
- Some model sharing possible (sometimes)
- Concept-to-text generation
 - Later also: text-to-text generation
NLG applications

- Teaching
- Marketing
- Entertainment (e.g. joke generation)
- Realisation for creative systems (e.g. storytelling)
- Interactive systems, dialogue
- News customization / automation: our focus
Evaluation

- Not a lot in R&D: not well established in 2000
- Better established methods since
- Difficult problem
- Very important topic!
- Won’t talk much in this group
Architecture of an NLG system

Normal to divide system into modules for sub-tasks

- Reuse components across systems
 - Some domain-/language-/application-specific
 - Others reusable, or can use standard tools
- Modify individual components as necessary
 - Problem or customisation can be addressed in responsible module
 - Easier adaptation across domains
- Human involvement in some modules
 - E.g. don’t want to automate whole process
Architecture of an NLG system

- General pipeline architecture well established
- Much current work focuses on subtasks as divided up here
- In practice, given system may divide up differently
 - May not need some parts
- Not the only way
 - Much recent work uses different divisions
 - Or no division at all – end-to-end generation
Inputs

- Communicative goal:
 - E.g. *inform, request, persuade, obtain information*

- Speaker chooses goal
 - Various formalisations
 - Often trivial: simply inform about data
 - Not true of journalism in general
 - May be true for a lot of new automation we want to do
Inputs

Input 4-tuple: \(<k, c, u, d>\)

- **Knowledge source**
 Domain knowledge, knowledge base, …

- **Communicative goal**
 What to convey. Type (template) + instance (specific information)

- **User model**
 Intended audience. Often hard-wired

- **Discourse history**
 Said so far. Allows for reference, discourse, …
Output

- Typically text
- May include
 - structure
 - markup
 - other rich info as necessary
Pipeline

- **Document planner**
 - Content determination
 - Document structuring

- **Microplanner**
 - Lexicalisation
 - Referring expression generation
 - Aggregation

- **Realiser**
 - Linguistic realisation
 - Structure realisation
Data structures in pipeline
Traditional NLG modules

Communicative goal

Document planner
- Content determination
- Document structuring

Document plan

Microplanner
- Lexicalisation
- Referring expression generation
- Aggregation

Text specification

Realiser
- Linguistic realisation
- Structure realisation

Surface text
Document plan

- Tree:
 - Internal nodes: structure, e.g. discourse relations
 - Leaves: messages

- Message:
 - Piece of info to express
 - Domain-specific concepts, entities, relations
 - Domain modelling: experts
 - May be later combined into one sentence (aggregation)

- Requires domain knowledge: not just data transformation
Document planner

Content determination
Content determination

- Decide what to communicate
 - May be specified in input
 - Often choose relevant info
- Depends on:
 - Communicative goals – different subsets of available data
 - User – e.g. novice vs. expert
 - Output constraints – e.g. limited space
 - Information available
- Very application dependent: can’t specify general rules.
Document structuring

- Impose ordering / structure on information
- Closely related to genre of text
- Simplest: just ordering
- Often think of hierarchical structure. May define in terms of:
 - Subject matter / content
 - Discourse relations – explanation, elaboration, ...
- Sometimes signalled explicitly, sometimes left to reader
 - E.g. “therefore”
 - Rich output – markup, sections
- Also highly application-dependent
Discourse relations

- Logical relationship between segments of discourse
- Examples:
 - Explanation:
 Mark switched off the light. It was time to go home.
 - Result:
 Mark switched off the light. The room was dark.
 - Narration:
 Mark switched off the light. He left the building and took a bus home.
- Various formal theories: Discourse Relation Theory
- Hierarchical structure
- Sometimes explicitly marked:
 - Mark switched off the light, because it was time to go home
Text specification
Text specification

- All information required to realise the text
- Tree:
 - Internal nodes: text structure elements
 - Leaves: phrase specifications
- Structures like discourse relations gone
 - Some mapped onto text elements (e.g. because)
 - Some implicit
- Multiple messages may have been combined into phrases
- Ordering fully specified
Phrase specification

- Each corresponds to a phrase
 - Usually a sentence
- May be specified in various ways
 - Generated string
 - Fragment of canned text
 - Abstract syntactic structure
 - Lexicalised case frame

- Structure of sentence
- Uninflected content words
- Syntactic features for words

- More abstract structure
- Semantics roles
- Filled template
Microplanner

Lexicalisation
Lexicalisation

- Choose content words to express selected content
- May also involve choosing linguistic structures
- May depend on:
 - User – what sort of language is appropriate / effective
 - Pragmatic factors – e.g. what to emphasise
 - Communicative goals
- Multilingual systems
 - Some choices fairly language-independent
 E.g. broad-scale linguistic structures
 - Others obviously require different components for different languages
 E.g. picking content words
Referring expression generation

- How to refer to entities
- Initial reference
 - In practice, often heavily constrained by data
 - E.g. person name
 - Therefore, usually straightforward
- Subsequent reference
 - Abbreviate without ambiguity
 - E.g. use pronouns
 - Difficult task
 - Must take context into account
- Common approach:
 determine properties to be expressed, lexicalise

BlackRock Inc, the world's biggest asset manager, reported better-than-expected quarterly profits on Friday, as *it* clamped down on expenses.

Investors poured $88 billion into *the company's* market-tracking index investments.
Aggregation

- Combine **messages** into **phrases**
- Message – one piece of information
- Build phrases to convey several pieces of information

Investors bought its *index investments* and *iShares exchange-traded funds*.

- Interaction with lexicalisation
 - Some lexicalisations permit aggregations that others don’t
Realiser

- Communicative goal
 - Document planner
 - Content determination
 - Document structuring
 - Document plan
 - Microplanner
 - Lexicalisation
 - Referring expression generation
 - Aggregation
 - Text specification
 - Realiser
 - Linguistic realisation
 - Structure realisation
 - Surface text
Linguistic realisation

- Produce text
- Traverse text spec & phrase specs
- Output from nodes
 - Trivial for some types: e.g. string
 - More complex for others: e.g. abstract syntactic structure
- More abstract representations better for multilingual systems
 - Leave language-specific choices till later in pipeline
- Well-established, public-domain systems exist
Surface realisation

- Convert document structure information into annotations
- E.g. markup, paragraph breaks, section headings
Future topics

- Week 3: Goals and architecture of algorithmic journalism
 - What algorithmic journalism can be (or already is) useful for
- Week 4: NLG pipeline for weather reporting
 - Traditional NLG, more detail on specific, much-studied example
- Week 5 & 6: Statistical NLG
 - More up-to-date techniques, text-to-text generation, neural generation
 - Week 5: Statistical approaches to components of pipeline
 - Week 6: Alternative architectures for statistical NLG
- Week 7: Interaction with journalists
 - How can journalists interact with generation? Review of existing approaches
Course information

http://courses.helsinki.fi

NATURAL LANGUAGE GENERATION FOR NEWS AUTOMATION

582767, Lecture Course, 2 cr, Mark Granroth-Wilding, Hannu Toivonen, 17.01.2017 - 28.02.2017 Teaching language en

TRADITIONAL NLG PIPELINE AND NLG FOR NEWS

We cover a grounding in the traditional stages of the NLG pipeline, through to recent advances, with a focus on news.

This course will begin with an overview of the typical technical architecture of a Natural Language Generation (NLG) system and some of the techniques used at different stages of the pipeline. In the following sessions, each presented by a different participant, we will look more closely at recent advances in different technologies that form parts of the traditional pipeline, as well as more recent alternatives to the pipeline, including NLG using neural networks.
<table>
<thead>
<tr>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMETABLE</td>
</tr>
<tr>
<td>MATERIAL</td>
</tr>
<tr>
<td>TOPIC: GOALS AND ARCHITECTURE OF ALGORITHMIC JOURNALISM</td>
</tr>
<tr>
<td>TOPIC: NLG PIPELINE FOR WEATHER REPORTING</td>
</tr>
<tr>
<td>TOPIC: STATISTICAL NLG, PART I: STATISTICAL APPROACHES TO PIPELINE COMPONENTS</td>
</tr>
<tr>
<td>TOPIC: STATISTICAL NLG, PART II: ALTERNATIVE ARCHITECTURES</td>
</tr>
<tr>
<td>TOPIC: INTERACTION WITH JOURNALISTS</td>
</tr>
<tr>
<td>CONDUCT OF THE COURSE</td>
</tr>
</tbody>
</table>