INTRODUCTION TO DATA SCIENCE
EPISODE 1: WHAT IS DATA SCIENCE?, DATA
TODAY’S MENU

1. COURSE LOGISTICS

2. WHAT IS DATA SCIENCE?

3. DATA
WHO WE ARE

• Lecturer: Teemu Roos, Associate Professor

• TAs: Ioanna Bouri & Johannes Verwijnen
 (+ Chang Rajani behind the scenes)

• How to reach us:
 1. Piazza!
 2. Email teemu.roos@cs.helsinki.fi
 3. Bump into us
 4. Knock on the door
WITH SPECIAL THANKS TO

WRAY BUNTINE
DIRECTOR OF DATA SCIENCE MSC PROGRAMME
MONASH UNIVERSITY AUSTRALIA

(FOR LETTING ME TAKE A LOOK AT HIS “INTRODUCTION TO DATA SCIENCE” MATERIALS)
LOGISTICS

• Lectures Mondays 10am-12pm & Tuesdays 4pm-6pm, B123

• Exercise groups – **starting next week**
 1. Mondays 4-6pm D122 (31 registered)
 2. Tuesdays 12-2pm B120 (37 registered)
 3. Wednesdays 12-2pm C222 (38 registered)
 4. Wednesdays 4-6pm D123 (27 registered)

• Please cancel right away if you're not planning to stick around.

• If you have problems registering, please contact Reijo Siven <reijo.siven@helsinki.fi>
WHAT YOU NEED TO DO

• Lectures are **not** compulsory – but meant to be helpful

• **YOU DON’T LEARN DATA SCIENCE JUST BY LISTENING**

• Grade = exercises + miniproject

• Alternative way: project + separate exam (later)

• Note about the alternative way:
 – project has to be submitted **a week prior** to the separate exam
 – **register** to the separate exam online, 10 days before
MINIPROJECTS

• In addition to the “normal” exercises, there will be a miniproject

• Groups of 3 (not 2 or 4, sorry): FORM GROUPS BY NEXT WEEK

• You can choose the task:
 1. identify a problem or an opportunity
 2. identify relevant data
 3. preprocess the data ("wrangling")
 4. do some stuff (ML, doesn't have to be rocket science)
 5. interpret and apply
 6. communicate (report/application/presentation)

• Detailed instructions coming online (follow course website)
WHAT YOU SHOULD KNOW (ALREADY)

• Pretty good programming skills
 – no time to learn how to program on this course, sorry
 – language is your choice but we provide help with python
 – if you have good skills in one language, learning python as we go shouldn't be a problem

• Using command-line tools in a Linux environment

• Statistics:
 – linear regression, interpretation of a hypothesis test, …

• If you’re missing some of these, it’s your responsibility to make sure you fix it: we’ll provide some pointers to help.
OVERVIEW

THEME 1 data science, data formats, “wrangling”

THEME 2 exploration, visualization

THEME 3 statistical methods, machine learning

THEME 4 big data frameworks, deep learning

THEME 5 data governance, privacy, ethics

THEME 6 operationalization
 a.k.a. “How to create added value as a data scientist”
WHAT IS DATA SCIENCE?
DEFINITIONS

- “It’s what a data-scientist does.” – circular
- “Machine learning/data mining/statistics.” – too narrow
- “Collecting, manipulating, and analysing data in order to extracting value from it.”
- Wikipedia: “Data Science is the extraction of knowledge from data, which is a continuation of the field of data mining and predictive analytics.”
- NIST Big Data Working Group: “Data Science is the empirical synthesis of actionable knowledge from raw data through the complete data lifecycle process.”
THE HYPE

• There’s huge and growing demand especially in business

• Predicting the future is hard, but most likely you’ve made a great choice

• Because of the hype, everyone wants to “own” data science! – many of them are just selling their stuff with a new label

• Here, we mostly ignore the hype and talk about Data Science and how to do Data Science
WHAT IS A DATA SCIENTIST?

- A Data Scientist can:
 - **understand** the background domain
 - **design** solutions that produce added value
 - **implement** the solutions efficiently
 - **communicate** the findings clearly (important!)

- Data Scientist is a *practitioner* with sufficient expertise in software engineering, statistics/machine learning, **and** the application domain.

- [Hans Rosling video](#)
NEXT UP: DATA
BIG DATA

- TED Talk: “Big data is better data” by Kenneth Cukier

- A crucial part of the rise of Data Science is the steep increase in the amount and availability of data

- Big Data refers not only to the quantity but also to the quality of the data:
 - VOLUME: lots of it
 - VELOCITY: fast (streaming)
 - VARIETY: all kinds, not nice and “clean”
 - VERACITY: can it be trusted?
KINDS OF DATA

• STRUCTURED DATA
 – lists
 – $n \times m$ arrays
 – hierarchies
 (e.g., organization chart)
 – networks
 (e.g., travel routes, hypertext = links)

• Generic data-interchange formats:
 XML, JSON

• UNSTRUCTURED DATA
 – text
 – images
 – video
 – sound

• Often can be made structured by, e.g., parsing language, segmenting images, etc.
STRUCTURED DATA FORMATS

• CSV, comma separated values

```
sepal_length, sepal_width, petal_length, petal_width, species
5.1, 3.5, 1.4, 0.2, setosa
4.9, 3, 1.4, 0.2, setosa
4.7, 3.2, 1.3, 0.2, setosa
4.6, 3.1, 1.5, 0.2, setosa
```

• hierarchies, e.g., Newick tree format

```
(A, B, (C, D)E)F;
```

• networks, e.g., GraphViz (DOT)

```
digraph graphname {
    a -> b -> c;
    b -> d;
}
```
• Similar to XML but simpler

```json
{
  "firstName": "John",
  "lastName": "Smith",
  "isAlive": true,
  "age": 25,
  "address": {
    "streetAddress": "21 2nd Street",
    "city": "New York",
    "state": "NY",
    "postalCode": "10021-3100"
  },
  "phoneNumbers": [
    {
      "type": "home",
      "number": "212 555-1234"
    },
    {
      "type": "office",
      "number": "646 555-4567"
    },
    {
      "type": "mobile",
      "number": "123 456-7890"
    }
  ],
  "children": [],
  "spouse": null
}```
JSON

- python parsing (decoding) and output (encoding)

```python
import json

string = '{"first_name": "Alice", "last_name": "Wu"}'
parsed_object = json.loads(string)

print(parsed_object['first_name'])
Alice

d = {
 'name': 'Alice Wu',
 'titles': ['Dr', 'Prof'],
}

print(json.dumps(d))
{"titles": ["Dr", "Prof"], "name": "Alice Wu"}
```
XML

• same example:

```
<person>
 <firstName>John</(firstName>
 <lastName>Smith</lastName>
 <age>25</age>
 <address>
 <streetAddress>21 2nd Street</streetAddress>
 <city>New York</city>
 <state>NY</state>
 <postalCode>10021</postalCode>
 </address>
 <phoneNumber>
 <type>home</type>
 <number>212 555-1234</number>
 </phoneNumber>
 <phoneNumber>
 <type>fax</type>
 <number>646 555-4567</number>
 </phoneNumber>
 <gender>
 <type>male</type>
 </gender>
</person>
```
PARSING

• Given a known grammar, unstructured text data can be parsed

• “It ain’t over till the fat lady sings”

((it, (ain't, over)), (till, ((the, (fat, lady)), sings)))

• Similarly, images can be segmented into parts
IMAGE SEGMENTATION: EXAMPLE 2