DATA15001

INTRODUCTION TO ARTIFICIAL INTELLIGENCE

THE FINAL EPISODE (11): ROBOTICS
1. "GRAND CHALLENGE"
2. LEGO MIND-STORMS
3. ROBO WORKSHOPS
ROBOTICS AS A "GRAND CHALLENGE" OF AI

"AI proper":
+ computer vision
+ sound
 (speech recognition)
+ speech
+ NLP
+ information retrieval
+ reasoning
 (logic, probability)
+ machine learning
+ search
+ games
+ affective computing

actuators:
+ movement
 (precision, control)

sensors:
+ video & audio
+ touch
 (feedback loop)
+ balance
+ sense of movement
+ taste & smell
ROBOTS IN THE CULTURE

• A prominent topic in fiction
 – good robots:
 + Tik-Tok (Oz)
 + Wall-E
 + Data (Star Trek), ...
 – bad (or 'unhappy') robots:
 + 'Robot' (Karel Čapek, 1923),
 + Terminator (Part 1),
 + Roy (Blade Runner)

• Very far from reality
REALITY CHECK
REALITY CHECK

Getting some air, Atlas?

7,835,276 views
REALITY CHECK
MINDSTORMS

- main "brick" (computer)
- touch sensor
- 3 motors
- sound sensor
- light sensor
- ultrasonic sensor
MINDSTORMS: TRIBOT

- 2 motors connected to wheels
- 1 motor connected to "claws"
- ultrasound and touch: front
- light sensor: down
MINDSTORMS: "CAR"

Motor.A
light sensor
Motor.B

ultrasound
(third wheel)

this way forward

Hello World!
leJOS

- leJOS NXT: An operating system that can be run on Mindstorms
- Has a Java Virtual Machine: you can control the robot by writing Java code
- Tools (on your/our computer):
 - Java compiler with package lejos
 - Uplink to robot (USB or Bluetooth)
- Well documented API for accessing motors and sensors
Integrated development environment in Eclipse
 – writing code
 – compiling
 – uploading to robot

We'll provide the environment so that you don't have to install it on your computer (but you can if you like)
leJOS: PROGRAMMING

• Normal Java

```java
public class RobotTest {
    public static void main (String[] args) {
        System.out.println("Hei mualima.");
    }
}
```

• After compilation, bytecode uploaded to robot

• Choose program from robot menu and execute

• You can abort the program on the robot by pressing the orange and dark gray buttons at the same time
MOTORS

- 3 motors, 3 motor ports

- Static objects

- API Class `NXTRegulatedMotor`

  ```java
  Motor.A.setSpeed(400); // set speed
  Motor.A.forward();    // start rotating
  Motor.A.stop();       // stop
  Motor.A.backward();   // start rotating back
  Motor.A.rotate(45);   // rotate 45 degrees
  ```
PILOT

• A higher-level interface to the motors in vehicle-type robots

• API class DifferentialPilot

• Need to specify the diameter (wD) and axis span (aD) of wheels:

```java
DifferentialPilot pilot =
    new DifferentialPilot(wD,aD,Motor.A,Motor.B);

pilot.travel(50); // drive 50 cm ahead
pilot.rotate(-90); // turn 90° counter-clockwise.
```
TOUCH SENSOR

- Returns a Boolean indicating whether pressed or not
- API class TouchSensor

```java
TouchSensor touch = new TouchSensor(SensorPort.S1);
touch.isPressed();  // true if pressed
```
LIGHT SENSOR

• Returns an integer that says high light the target is

• API class LightSensor

```java
LightSensor light =
    new LightSensor(SensorPort.S2);
```

• int l = light.readValue() // 0–100

• Note: lightness depends on the environment, so you can't know what, e.g., 48 means

• The sensor can be calibrated (see API) but in practice, it's easiest to simply print out the numbers and adjust your code
ULTRASONIC SENSOR

• Returns an integer that says far the target is (in cm)

• API class UltraSonicSensor

```java
UltraSonicSensor sonic =
    new UltraSonicSensor(SensorPort.S3);
```

• int d = sonic.getDistance() // 0–255 (cm)

• Works best with flat, hard surfaces

• Accuracy a couple cm, max 200 cm

• Return value 255 means that no object was detected (no echo)
ABOUT ROBO WORKSHOPS

• You have to **register** on Doodle: [click here](#)
 – not (necessarily) your regular exercise group!
 – see the link in the github material (Exercise 6.1)

• You should prepare a solution on your own **before** the workshop
 – otherwise you will probably not have enough time to complete both tasks
 – however, you will **not** be able to do any testing without a robot (and the leJOS environment): "blind coding"

• In the workshops, you'll do the tasks **in groups of three**
 – tasks are quite straightforward
 – but hard because of the sensing constraints
 – have to **think** differently
ABOUT ROBO WORKSHOPS

• One robot + laptop with leJOS per group (of three)

• Pre-built "cars"
 – check the motor and sensor ports (follow the cables)