DATA11002

Introduction to Machine Learning

Lecturer: Antti Ukkonen
TAs: Saska Dönges and Janne Leppä-aho

Department of Computer Science
University of Helsinki

(based in part on material by Patrik Hoyer, Jyrki Kivinen, and Teemu Roos)

November 1st–December 14th 2018
Lectures 3–4: Linear models & Evaluating performance II
November 8 & 9, 2016
Let $X = (X_1, X_2, \ldots, X_p)$ denote a set of *input variables*, aka. *features*, *predictors*, *covariates* or *independent variables*.

Let Y denote an *output variable*, aka. *response*, *dependent variable*, or *(class) label* (in classification).

For now, we focus on the following setting:

$$Y = f(X) + \epsilon,$$

where f is some unknown (possibly insanely complicated) function, and ϵ is an *error term*.

All *systematic* information that X provides about Y is contained in f.

Our objective is to *learn* \hat{f} that is an *estimate* of f.
Linear models

- We consider the case $x \in \mathbb{R}^p$ throughout this lecture.

- Function $f : \mathbb{R}^p \to \mathbb{R}$ is linear if for some $\beta \in \mathbb{R}^p$ it can be written as

$$f(x) = \beta \cdot x = \sum_{j=1}^{p} \beta_j x_j$$

and affine if for some $\beta \in \mathbb{R}^p$ and $a \in \mathbb{R}$ we can write

$$f(x) = \beta \cdot x + a$$

- β is called coefficient vector and a is called intercept (or particularly in machine learning literature, weight vector and bias).
Linear models (2)

- Linear model generally means using an affine function by itself for regression, or for classification via a “link function”

- The learning problem is to determine the parameters β and a based on data

- Linear regression and classification have been extensively studied in statistics
Univariate linear regression

▶ As warm-up, we consider linear regression in one-dimensional case $p = 1$

▶ We use square error and want to minimise it on training set $(x_1, y_1), \ldots, (x_n, y_n)$

▶ Thus, we want to find $a, \beta \in \mathbb{R}$ that minimise

$$E(\beta, a) = \sum_{i=1}^{n} (y_i - (\beta x_i + a))^2$$

▶ This is known as ordinary least squares and can be motivated as maximum likelihood estimate for (β, a) if we assume

$$y_i = \beta x_i + a + \epsilon_i$$

where ϵ_i are i.i.d. Gaussian noise with zero mean
Univariate linear regression (2)

- We solve the minimisation problem by setting the partial derivatives to zero.
- We denote the solution by \((\hat{\beta}, \hat{a})\).
- We have
 \[
 \frac{\partial E(\beta, a)}{\partial a} = -2 \sum_{i=1}^{n} (y_i - \beta x_i - a)
 \]
 and setting this to zero gives
 \[
 \hat{a} = \bar{y} - \beta \bar{x}
 \]
 where \(\bar{y} = (1/n) \sum_i y_i\) and \(\bar{x} = (1/n) \sum_i x_i\).
Univariate linear regression (3)

Further,

\[
\frac{\partial E(\beta, a)}{\partial \beta} = -2 \sum_{i=1}^{n} x_i (y_i - \beta x_i - a)
\]

Plugging in \(a = \hat{a} \) and setting the derivative to zero gives us

\[
\sum_{i=1}^{n} x_i (y_i - \beta x_i - \bar{y} + \beta \bar{x}) = 0
\]

from which we can solve

\[
\hat{\beta} = \frac{\sum_{i=1}^{N} x_i (y_i - \bar{y})}{\sum_{i=1}^{N} x_i (x_i - \bar{x})}
\]
Univariate linear regression (4)

- Since

\[\sum_{i=1}^{n} \bar{x}(y_i - \bar{y}) = \bar{x} \left(\sum_{i=1}^{n} y_i - n\bar{y} \right) = 0 \]

and

\[\sum_{i=1}^{n} \bar{x}(x_i - \bar{x}) = \bar{x} \left(\sum_{i=1}^{n} x_i - n\bar{x} \right) = 0 \]

we can finally rewrite this as

\[\hat{\beta} = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{N} (x_i - \bar{x})^2} \]

- Notice that we have \(\hat{\beta} = \sigma_{xy}/\sigma_{xx} \) where \(\sigma_{pq} \) is sample covariance between \(p \) and \(q \):

\[\sigma_{pq} = \frac{1}{n-1} \sum_{i=1}^{n} (p_i - \bar{p})(q_i - \bar{q}) \]
Multivariate linear regression

- We now move to the general case of learning a linear function $\mathbb{R}^p \rightarrow \mathbb{R}$ for arbitrary p.

- We use the squared error, which is by far the most commonly used loss for linear regression.

- One potential problem with squared error is its sensitivity to outliers.
 - One alternative is absolute loss $|y - \hat{f}(x)|$.
 - Computations become trickier with absolute loss.
Multivariate linear regression (2)

- We assume that the matrix $X \in \mathbb{R}^{n \times p}$ has n instances x_i as its rows and $y \in \mathbb{R}^n$ contains the corresponding labels y_i.

- Terminology: X is the **design matrix**; elements of x_i are **covariates**; y_i is the **response**.

- We write
 \[y = X\beta + \epsilon \]
 where the **residual** $\epsilon_i = y_i - x_i \cdot \beta$ indicates error that coefficient vector β makes on data point (x_i, y_i).

- Our goal is to find β which minimises the sum of squared residuals
 \[\sum_{i=1}^{n} \epsilon_i^2 = \|\epsilon\|_2^2 \]
Multivariate linear regression (3)

- By an argument involving matrix derivatives (or alternatively, orthogonal projections), we obtain the least squares solution which can be conveniently expressed using matrix notation.

- With A^{-1} denoting the matrix inverse of a (square) matrix A, the solution is given by

\[
\hat{\beta} = (X^T X)^{-1} X^T y
\]

- In R:

```r
library(MASS)
lm.fit = lm(medv ~ crim, data = Boston)
lm.fit = lm(medv ~ ., data = D) # all variables
summary(lm.fit)
```
Multivariate linear regression (4)

- If the columns c_j of X are linearly independent, the matrix $X^T X$ is of full rank and has an inverse.

- For $n \geq p$, this is true except for degenerate special cases.

- For $n < p$, this is never true, and no unique solution exists. (We’ll talk about the “large p, small n” case later.)

- $X^T X$ is a $p \times p$ matrix, and inverting it takes $O(p^3)$ time.

- For very high dimensional problems the computation time may be prohibitive.
Useful trick

- It would be simpler to learn just linear functions and not worry about the intercept term separately.

- An easy trick for this is to replace each instance $x_i = (x_{i1}, \ldots, x_{ip}) \in \mathbb{R}^p$ by $x'_i = (1, x_{i1}, \ldots, x_{ip}) \in \mathbb{R}^{p+1}$.

- Now an affine function $f(x) = \beta \cdot x + a$ in \mathbb{R}^p becomes linear function $g(x') = \beta' \cdot x'$ where $\beta' = (a, \beta_1, \ldots, \beta_p)$.

- If we write the set of instances x_1, \ldots, x_n as an $n \times p$ matrix, this means adding an extra column of ones.
Useful trick (2)

- For most part we now present algorithms for learning linear functions (instead of affine).

- In practice, to run them on p-dimensional data, we add the column of ones and run the algorithm in $p + 1$ dimensions.

- The first component of β then gives the intercept.

- However sometimes we might still want to treat the intercept separately (for example in *regularisation*).
Nonlinear models by transforming the input

- **Linear regression** can also be used to fit models which are *nonlinear* functions of the input

- **Example:** For fitting a degree 5 polynomial

\[
y_i = f(x_i) = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \beta_4 x_i^4 + \beta_5 x_i^5
\]

\[
\ldots \text{ create the input matrix }
\]

\[
X = \begin{pmatrix}
1 & x_1 & x_1^2 & x_1^3 & x_1^4 & x_1^5 \\
1 & x_2 & x_2^2 & x_2^3 & x_2^4 & x_2^5 \\
1 & x_3 & x_3^2 & x_3^3 & x_3^4 & x_3^5 \\
1 & x_4 & x_4^2 & x_4^3 & x_4^4 & x_4^5 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{pmatrix}, \quad \text{and} \quad y = \begin{pmatrix}
y_1 \\
y_2 \\
y_3 \\
y_4 \\
\vdots
\end{pmatrix}
\]
Nonlinear predictors by transforming the input (2)

- We can also explicitly include some interaction terms, as in

$$y_i = f(x_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1}x_{i2}$$

using the following input matrix:

$$X = \begin{pmatrix}
1 & x_{11} & x_{12} & x_{11}x_{12} \\
1 & x_{21} & x_{22} & x_{21}x_{22} \\
1 & x_{31} & x_{32} & x_{31}x_{32} \\
1 & x_{41} & x_{42} & x_{41}x_{42} \\
\vdots & \vdots & \vdots & \vdots \\
\end{pmatrix}, \quad \text{and} \quad y = \begin{pmatrix}
y_1 \\
y_2 \\
y_3 \\
y_4 \\
\vdots \\
\end{pmatrix}$$

- See the book (page 87 onwards) for more on this.
Evaluating model performance
Goals for this topic

- Familiarity with the basic ideas of evaluating generalisation performance of (supervised) learning system
- Ability to explain overfitting and underfitting with examples
- Ability to explain with examples the idea of model complexity and its relation to overfitting and underfitting
- Using separate training, validation and test sets and cross validation in practice
How good is my classifier?

- Apply the learned classifier to the training data?
 - a simple model will not be able to fit all the training data perfectly
 - the more complex the model, the better it typically fits
 - in particular, in nested model classes such as polynomials of increasing order, a more complex model always fits better than a simpler model
 - at the extreme case, we could fit a model that is flexible enough to fit any data perfectly

\implies does this suggest that a complex model is always better?

- Of course not... the goal of learning is to perform well on new (unseen) data. How can we test that?

- Note that we almost invariable make the basic assumption that future data comes from the same source as the training data. Otherwise we’re doomed!
Statistical learning model

Setting the stage:

- We consider supervised learning: goal is to learn a function \(\hat{f} : \mathcal{X} \to \mathcal{Y} \).

- During learning, we create \(\hat{f} \) based on training set \(\{ (x_1, y_1), \ldots, (x_N, y_N) \} \) where \((x_i, y_i) \in \mathcal{X} \times \mathcal{Y} \).

- Later we test \(\hat{f} \) on unseen data points \(\{ (x_{N+1}, y_{N+1}), \ldots, (x_{N+M}, y_{N+M}) \} \).

- We have a **loss function** \(L : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R} \) and wish to minimise the average loss on unseen data:

\[
\frac{1}{M} \sum_{i=1}^{M} L(\hat{f}(x_{N+i}), y_{N+i})
\]
Loss function $L(\hat{y}, y)$: How much does it “cost” us if we predict \hat{y} when the outcome is y.

We’re already familiar with the squared error in regression:

$$L(\hat{y}, y) = (\hat{y} - y)^2$$

In classification, the most straightforward loss function is the zero–one loss:

$$L(\hat{y}, y) = \begin{cases} 0, & \text{if } \hat{y} = y \\ 1, & \text{otherwise} \end{cases}$$

Asymmetric loss functions can be more sensible in many situations:

$$L(\hat{y}, y) = \begin{cases} 0, & \text{if } \hat{y} = y \\ a, & \text{if } \hat{y} = 1, y = 0 \\ b, & \text{if } \hat{y} = 0, y = 1 \end{cases}$$
A classifier can also make probabilistic predictions and output a probability distribution \hat{p} over the values of y.

In the probabilistic case, an interesting loss function is the **logarithmic loss** (or *log-loss* for short):

$$L(\hat{p}, y) = -\log \hat{p}(y) \geq 0$$

and many more...

Furthermore, sometimes when minimizing the actual loss function is hard, we may use a **surrogate loss** function that is similar to the actual loss function but easier to manipulate — we'll return to this in connection to Support Vector Machines.
Statistical learning model (4)

- Assume that there is a fixed but unknown probability distribution \(P \) over \(\mathcal{X} \times \mathcal{Y} \) such that pairs are \((x_i, y_i)\) are independent samples from it.

- We say the data points are *independent and identically distributed* (i.i.d.).

- We wish to minimise the *generalisation error* (also called *risk*) of \(\hat{f} \), which is the expected loss

\[
E_{(x,y) \sim P}[L(\hat{f}(x), y)]
\]

where \(E_{(x,y) \sim P}[\cdot] \) denotes expectation when a single data point \((x, y)\) is drawn from \(P \).
If P were known, this would just be an optimization problem:

$$\min_{\hat{f}} E_{(x,y) \sim P} [L(\hat{f}(x), y)]$$

(This problem could be very hard to solve, but it wouldn’t be a statistical problem.)

Since P is not known, *learning* comes to the picture.
The key is that we have training data drawn from \(P \), so that we can use it to make more or less accurate inferences about properties of \(P \).

In particular, based on the law of large numbers, the average loss is close to the expected loss with high probability:

\[
\sum_{i=1}^{n} \frac{1}{n} L(\hat{f}(x_i), y_i) \approx E_{(x,y) \sim P}[L(\hat{f}(x), y)]
\]

For zero–one loss, the difference between the average and the expected loss can be bounded (with high probability) by Hoeffding’s inequality; see Exercise 1.1.

...but remember the problem when there are many models!
Overfitting

- Overfitting means creating models that follow too closely the specifics of the training data, resulting in poor performance on unseen data.

- Overfitting often results from using too complex models with too little data:
 - Complex models allow high accuracy but require lots of data to train.
 - Simple models require less training data but are incapable of modelling complex phenomena accurately.

- Choosing the right model complexity is a difficult problem for which there are many methods (incl. cross validation; Exercise 1.3).
What is model complexity?

- The simplest case is the one where the number of models available is finite; see again Exercise 1.1

- For *parametric* models the number of parameters can be used to obtain a measure of complexity (e.g. linear model in p dimensions, degree k polynomial)

- Some non-parametric models also have intuitive complexity measures (e.g. based on the number of nodes in decision tree)

- There are also less obvious parameters that can be used to control overfitting (e.g. kernel width, parameter k in kNN, norm of coefficient vector in linear model)

- Mathematical study of various formal notions of complexity is a vast field; we’ll scratch the surface
Error vs flexibility (train and test)

- Left: Data source (black line), data (circles), and three regression models of increasing complexity; Right: training and test errors (squared error) of the three models

(Figure 2.9 from the course textbook)
Error vs flexibility (train and test)

- Typical behaviour: The higher the model complexity (more flexible model) the lower the error on the training sample. However, the error curve for a test sample is U-shaped.

(figure from Hastie et al, 2009)
Bias-variance tradeoff

- Based on N training datapoints from the distribution, how close is the learned classifier to the optimal classifier?

Consider multiple trials: repeatedly and independently drawing N training points from the underlying distribution.

- **Bias**: how far the average model (over all trials) is from the real optimal classifier
- **Variance**: how far a model (based on an individual training set) tends to be from the average model

- **Goal**: Low bias and low variance.

- High model complexity \Rightarrow low bias and high variance
 Low model complexity \Rightarrow high bias and low variance
Bias-variance for regression

- Bias and variance have a particular mathematical meaning in regression with square loss

- Let $\hat{f}_S : \mathcal{X} \rightarrow \mathbb{R}$ be the model our algorithm produces from training set S

- Let $f_*(x)$ be the prediction of some “target” function f_* (say, Bayes optimal)

- The loss of \hat{f} with respect to the target on a given point x is

\[
(f_*(x) - \hat{f}_S(x))^2
\]

- Taking expectation over all possible training sets gives

\[
E_S[(f_*(x) - \hat{f}_S(x))^2]
\]
Bias-variance for regression (2)

- Write $\bar{f}(x) = E_S[\hat{f}(x)]$ for the average prediction of our algorithm on x

- A straightforward calculation gives the decomposition

$$E_S[(f_*(x) - \bar{f}_S(x))^2] = (f_*(x) - \bar{f}_S(x))^2 + E_S[(\hat{f}_S(x) - \bar{f}(x))^2]$$

- **bias** $(f_*(x) - \bar{f}_S(x))^2$ measures how much our “aiming point” $\bar{f}(x)$ is off the “target” $f_*(x)$

- **variance** $E_S[(\hat{f}_S(x) - \bar{f}(x))^2]$ measures how much the actual prediction $\hat{f}_S(x)$ wanders around the “aiming point” due to random training set
Using ‘validation’ data to overcome overfitting

1. Split the data into ‘train’ and ‘validation’ subsets:

 ![Diagram showing train and validation subsets]

 available data

2. Fit models with varying complexity on ‘training’ data, e.g.
 - regression with different covariate subsets (feature selection)
 - decision trees with variable number of nodes
 - support vector machines with different regularization parameters

3. Choose the subset/number-of-nodes/regularization based on performance on the ‘validation’ set

 (An issue: the amount of training data is not the same as in the original problem. Also: trade-off between the amount of training vs validation data)
Cross-validation

To get more reliable statistics than a single ‘split’ provides, use \(K \)-fold cross-validation (see Exercise 1.3.c, book Chapter 5.1):

1. Divide the data into \(K \) equal-sized subsets:

 ![Available data division]

2. For \(j \) goes from 1 to \(K \):
 2.1 Train the model(s) using all data except that of subset \(j \)
 2.2 Compute the resulting validation error on the subset \(j \)

3. Average the \(K \) results

When \(K = N \) (i.e. each datapoint is a separate subset) this is known as leave-one-out cross-validation.