ON THE PROBABILITY OF INVASION IN A MULTI-TYPE BRANCHING PROCESS WITH A SINGLE BIRTH STATE

STEFAN A. H. GERITZ

Consider a multi-type branching process with states 0, . . . , n, and where 0 corresponds to the unique birth state, and let \(b_j \) denote the birth rate and \(d_j \) the death rate in state \(j \), and let \(t_{ij} \) be the transition rate from state \(j \) to state \(i \). For the conservation of probability mass we necessarily have

\[
(1) \quad t_{jj} = -\sum_{i \neq j} t_{ij} \quad \forall j.
\]

Let further \(p_j[l] \) denote the probability that an individual presently in state \(j \) will produce \(l \) offspring during the rest of its stay in the same state \(j \), and let \(q_j(k) \) denote the probability that an individual presently in state \(j \) will produce \(k \) offspring during the rest of its life in the present state and all other states it will visit thereafter. Then

\[
(2) \quad p_j[l] = \left(\frac{b_j}{b_j + d_j - t_{jj}} \right)^l \frac{d_j - t_{jj}}{b_j + d_j - t_{jj}}
\]

(i.e., the probability that there are \(l \) birth-events followed by a single non-birth event which terminates the stay in state \(j \) either by a death event or a transition to another state), and

\[
(3) \quad q_j[k] = p_j[k] \frac{d_j}{d_j - t_{jj}} + \sum_{l=0}^{k} p_j[l] \sum_{i \neq j} \left(q_i[k - l] \frac{t_{ij}}{d_j - t_{jj}} \right)
\]

(i.e., the probability of producing \(k \) offspring in state \(j \) followed by a death event plus the probability of producing \(l \) offspring in state \(j \) and \(k - l \) offspring during the rest of the individual's life after a transition to another state).

Let \(f_j(z) \) and \(g_j(z) \) denote the probability generating functions of the distributions \(\{p_j[l]\}_{l \geq 0} \) and \(\{q_j[k]\}_{k \geq 0} \). Then

\[
(4) \quad f_j(z) = \frac{d_j - t_{jj}}{(1 - z)b_j + d_j - t_{jj}}
\]

and after some pretty straightforward calculations, also involving equation (4),

\[
(5) \quad g_j(z)((1 - z)b_j + d_j) = d_j + \sum_{\forall i} g_i(z)t_{ij}.
\]
Differentiation of equation (5) gives

\[R_j d_j - b_j = \sum_{\forall i} R_i t_{ij} \]

where we used that \(g_j(1) = 1 \) and \(g_j'(1) = E_j\{k\} = R_j \), which is the reproduction ratio of state \(j \). Note that in particular \(R_0 \) is the well-known basic reproduction ratio. Define

\[R := \begin{pmatrix} R_0 & \ldots & R_n \\ 0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0 \end{pmatrix}, \quad B := \begin{pmatrix} b_0 & \ldots & b_n \\ 0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0 \end{pmatrix} \]

\[D := \begin{pmatrix} d_0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & d_n \end{pmatrix}, \quad T := \begin{pmatrix} t_{00} & \ldots & t_{0n} \\ \vdots & \ddots & \vdots \\ t_{n0} & \ldots & t_{nn} \end{pmatrix} \]

Since there is only one birth state, \(R \) is equal to the so-called next generation matrix. Equation (6) can be written in matrix notation as

\[R(D - T) = B \]

or equivalently

\[R = B(D - T)^{-1} \]

which is possible because \(D - T \) is strictly diagonally dominant and thus can be inverted.

Next, let \(z_j \) denote the probability of the eventual extinction of the branching process starting in state \(j \). Then, substitution of \(z = z_0 \) in equation (5) gives

\[z_j((1 - z_0)b_j + d_j) = d_j + \sum_{\forall i} z_i t_{ij} \]

where we used that \(g_j(z_0) = z_j \) for all \(j \). Let \(\pi_j = 1 - z_j \) denote the probability of invasion starting from state \(j \), then from equation (10) and equation (1) we get that

\[\pi_j(\pi_0 b_j + d_j) = \pi_0 b_j + \sum_{\forall i} \pi_i t_{ij} \]

Define

\[\Pi := \begin{pmatrix} \pi_0 & \ldots & \pi_n \\ 0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0 \end{pmatrix} \]

then equation (11) can be rewritten as

\[\Pi(\pi_0 B + D - T) = \pi_0 B. \]
Right-multiplication with \((D - T)^{-1}\), using equation (9), subsequently gives
\[
\Pi(\pi_0 R + I) = \pi_0 R
\]
or equivalently,
\[
\Pi = \pi_0 R(\pi_0 R + I)^{-1}
\]
where \(I\) is the identity matrix. We can do this because \(\pi_0 R + I\) is the product of two non-singular matrices, namely \(\pi_0 B + D - T\), which is strictly diagonally dominant, and \((D - T)^{-1}\). Hence \(\pi_0 R + I\) is non-singular itself and can be inverted. Formal expansion of the right hand side of equation (15) gives
\[
\Pi = \pi_0 R \sum_{i=0}^{\infty} (-1)^i \pi_0^i R^i
\]
which converges whenever all eigenvalues of \(\pi_0 R\) lie inside the unit circle in the complex plane, i.e., whenever \(\pi_0 R_0 < 1\). Writing out equation (18) for the upper leftmost element (i.e., the only element that matters, really), we get
\[
\pi_0 = \frac{\pi_0 R_0}{1 + \pi_0 R_0}
\]
i.e., \(\pi_0 = 0\) or
\[
\pi_0 = \frac{R_0 - 1}{R_0}
\]
whenever the latter is positive, i.e., whenever \(R_0 > 1\). If \(R_0 \leq 0\), then \(\pi_0 = 0\) is the only solution. Thus, in conclusion, we have shown that
\[
\pi_0 = \begin{cases}
0 & \text{if } R_0 \leq 0 \\
\frac{R_0 - 1}{R_0} & \text{if } R_0 > 1.
\end{cases}
\]
I would like to emphasize that this result is exact.