DISTRIBUTED SYSTEMS

Lecture2 ¢ Systemarchitectures

HuberFlores XiangSu, Pan Hui
{firstname.lastname}@helsinki.fi

HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET elsinki Finfand. 2016,
UNIVERSITY OF HELSINKI

Recap

A Fundamentals oflistributed systems
I Concepts
I Models

ARCHITECTURES

HELSINGIN YLIOPISTO
R HELSINGFORS UNIVERSITET
Helsinki, Finland, 2019. UNIVERSITY OF HELSINKI

Agenda

A Understanding different architecture
styles

A Mapping a system to a model
| State machine (Automaton)

Architecture

A Define the organization of a distributed system
I Interaction
I Behavior

A Software architecture

I Logical organization and interaction of software
components

A System architecture

I Instantiation of a software architecture on real
machines

Architecturestyles

A The notion of ararchitectural style

I Formulated in terms of components, their connections and
the data exchanged between them

I Acomponentis a modular unit with weltlefined required
and provided interfaces, replaceable within its environment

I Aconnectoris a mechanism mediating communication,
collaboration, coordination otooperation among
components

A Important architectural styles for distributed systems
I Layeredarchitectures
I Objectbased architectures
I Datacentered architectures
I Eventbased architectures

Layereadarchitectures

A Component at layer; s
allowed to call component
at the underlying layer; L
but not the other way aroun

A Control generally flows
from layer to layer Request

. flow
| Requests go down
I Results flow upward

A Widely adopted in
networking

Layer N

l

1

Layer N-1

f

Response
flow

To

j - N W A~ O o N

oSl

TCP/IP

Layereadarchitectures

_ayered networking architectures

Application

Application

HybridInternetprotocolstack

Presentation

T~ Not present

Session

" in the model Application layer

Transport

Transport

Transport layer

Network

Internet

Network layer
Data link layer

Data link

Physical

Host-to-network

- N W P O

Physical layer

_ayering allows mastering the complexity

I Explicit structure allows identification, relationship of
O2YLX SE

I Modularization eases maintenance, updating of system

Al KIyasS 2F AYLIX SYSyYyualadAz2y 2F |
rest of system

A4 \\

aeaisyQa LIASOSa

Objectbasedarchitectures

A Obijects correspond to

A Components are
connected via a
(remote) procedure
call mechanism
i RMI, RPC
I Webservices

AREST, SOA

Method call

com ponents Object L Object]
A

Resourcecenteredarchitectures

A Processes communicate through a common (passive
or active) resource e.g, repository
A Examples

I Distributed file systems
I Web-based data services

Eventbasedarchitectures

A Processes communicate through propagation of event:

A Events can optionally carry data

A Publish/subscribe systems
I Processes publish events

I Only processes having subscribed to particular events will

receive them

A Allows loose coupling Component Component
of Processes Event deIiveryT T l
I Processes need not < — >
explicitly refer to
each other T i

(referential decoupling)

Component

Shareddataspaces

A Eventbased architecture
combined with data
centered architecture

A Processes are also decoupled | Component CeNpono
In time (they need not both
be active when
communication takes place)

Data delivery Publish

Shared (persistent) data space

A Data can be accessed also
using a description instead of
explicit reference

Systemarchitectures

A Centralized architectures

A Decentralized architectures

Comparisor{Jungingei& Lee 2004

Feature Peerto-peer Centralized
Scalability High Limited
Resource availability High Limited
Fault tolerance High Limited

Infrastructure Selforganizing Needs setup and
administration
Infrastructure costs Low High
Storage of global date No Yes
Control No Yes
Trusted No Yes
Enterprise/legacy No Yes

system integration

Systemarchitectures

A Hybrid architectures
I Centalizedand decentralized

Centralizedarchitectures

A Clientservermodel

A Requestreply behavior
A Call semanticandtransmission

Server(process implementsa specificservice

Client(procesg requesta servicefrom a serverby sendinga request

andwaitingfor areply N
Client ee——

Reply

Request

fallureS Provide service Time —>»

Ideally: exactlwnce

Zeroor-Y2NB 6aYlI 80Se€0Y aSNIAOS YI &
At-leastonce: keep requesting service until valid response arrives at
client

At-most-once: no reply may mean that no execution took place
ldempotent vsnon-idempotentoperations

Idempotent (repeatable) operation can be repeated multiple
times without harm

Applicationlayering

_ User-interface
User interface level
HTML page
Keyword expression containing list
HTML
generator Processing
Query ﬁ(Ranked list level
generator of page titles
Ranking
Database queries component

Web page titles

with meta-information

Database Data level

with Web pages

Thegeneralorganizationof an Internetsearchengine

HELSINGIN YLIOPISTO
R HELSINGFORS UNIVERSITET
Helsinki, Finland, 2019. UNIVERSITY OF HELSINKI

Applicationlayering

A Usetinterface level
I Typically implemented by the client
I Consists of programs that allow end users to interact with applications
I Great variation in functionality provided by user interfaces

A Processing level
I Contains core functionality of an application

A Data level

I Contains programs that maintain the data on which the applications
operate

I Persistency
I Consistency

Multitiered architecture

A Simplest organization is to have only two types of machines

I A client machine containing only the programs implementing
(part of) the usetinterface level

I A server machine containing the rest (programs implementing
the processing and data level)

Alternativetwo-tiered client-serverorganizationg-atclients ((d)-(e)) vsthin clients((a)-(c))

Client machine

‘ User interfac_el User interface User interface User interface User interface

-
-~
-

Application Application Application

_4
$ ______________ $ 3 C e Database
/’/’ . A ////—\

- B — -

User interface T ~“$ “““““““““““ : :-~-$ _______
Application Application “A:r’)plication . /,/’/——\
Database Database Database Database [\/Database '

Server machine .

HELSINGIN YLIOPISTO
(a) (b) fIsinki, Finland, 2019) (e) R e T

Multitiered architecture

A Threetiered architecture

I Single server is replaced by multiple servers running on
distributed machines

T Server sometimes acts as a client

User interface Wait for result
(presentation) T\ T

Request
operation

Return
result

Wait for data

Application
server

Request data Return data

Database
server >
Time

A Vertical distribution
I Logically different components are placed on diffekent machines

HELSINGIN YLIOPISTO
L HELSINGFORS UNIVERSITET
Helsinki, Finland, 2019. UNIVERSITY OF HELSINKI

Decentralized architectures

A Peetrto-peer systems
I Horizontal distribution(in contrast to vertical distribution)

I Processes are equal (functions need to be carried out are
represented by every process)

I Interaction between processes Is symmetric (each process acts
as a client and a server at the same timgerveni

A Representation of peeto-peer architectures usingverlay
networks
I Nodes represent processes
I Links represent communication channels

A Structuredvsunstructured peeito-peer architectures

Structuredpeer-to-peerarchitectures

A Overlay network is constructed using a deterministic
procedure

A DHT (Distributed Hash Tabl&) the mostused procedure

I Data items are assigned a random key from a large identifier
space

I Nodes are assigned a random number from the same space

I Efficient and deterministic scheme uniquely mapping the key of

a data item to the identifier of a node using some distance
metric

I When looking up a data item, the network address of the node
responsible for that data item is returned

I Many DHT variations (e.g. Chord, CAN, Pastry, Bamboo,
TapestryKademlia

Structuredpeer-to-peerarchitectures

A Chord system

I Nodes are logically organized in a ring such that a data item witl
keykis mapped to the node with the smallest identifidr? k

I This node is called successor of kesucgk) o Actual node
i LOOKUR] returns address afucck) \Gi

{143 {13,14,15) {01} {2%

A Membership management (13) €
I Each node maintains shortcuts
to other nodes {8,9,10,11,12} {2,3.4)
I Joining: create random nodé, S floscsd
data items associated witld are {11; data keys {5
transferred fromsucdid) N\ ./

i Leaving: nodéd transfers its data L. 567} 16
items tosucgid) L9 RB/@/

Structuredpeer-to-peerarchitectures

A CAN (Content Addressable Network)

I d-dimensional Cartesian coordinate space is completely
partitioned among nodes

I Each data item is assigned a unigue point in this space
(corresponding node is responsible for the data item)

Keys associated with
node at (0.6,0.7)

(0.1)

|

(1,1)

\ (0.9,0.9)
[J
(0.2,0.8)
L]
(0.6‘0.7)
Actual node (0'960'6)
(0.2,0.3)
]
(0.7,0.2)
L]

(0,0)

(a)

(1,0)

Mapping
of data
itemsonto
nodes

(0'960'9)
(0.2,0.8) __
. Splittinga
0206)| Fegionwhen
(0.2,0.45) a nOdejOinS
(0.7,0.2)
(0.2,0.15) @

(b)

Structuredpeer-to-peerarchitectures

A DF

TcomparisonHautakorpi& Camari

102007)

Chord CAN Pastry Bamboo Tapestry Kademlia
Lookup .))
Cosub R, S-R (& 1 R, (S-R & 1 R, S-R (& 1) R, S-R & 1 R.S-R (& 1 I
methods . J i
Parallel e 1 . | s) 4 able o .] s
lookups not suitable no (can benefit) not suitable ves (on I) no (can henefit) ves
ﬂf;;;;ﬁilt} per-hop (not on I) landmark ord. ves, from others ves essentially no no
Graceful o)))
departure yves ves no no ves no
?f;ﬁ;;itmn & basic support versatile fairly good no default method no default method good
Complexity B) .) : i - . N o N .
simple simple quite complex quite complex quite complex simple
Eii:j;i:in moderate moderate high moderate (constant) quite high moderate

Node join &

quite simple very simple complex join quite simple complex join simple
departure
Configuration

a few many some some a small affect a few

parameters
Extendability . . . , : .

quite good rich already quite good quite good quite good quite good
Notification

framework

no

no

already exists

use Pastry’s

use Pastry’s

no

Unstructuredpeer-to-peer
architectures

A Overlay network is constructed using randomized
algorithms, resulting in mndom graph

I Each node maintains a list of neighbgrartial view),
which is constructed in random way

I Data items are placed randomly on nodes

Actions by active thread (periodically repeated):

select a peer P from the current partial view;
if PUSH_MODE {
mybuffer = [(MyAddress, 0)];
permute partial view;
move H oldest entries to the end;
append first ¢c/2 entries to mybuffer;
send mybuffer to P;
} else {
send trigger to P;
}
if PULL_MODE {
receive P’s buffer;
}

construct a new partial view from the current one and P’s buffer;
increment the age of every entry in the new partiai afiemny
(@)

