

Huber Flores, Xiang Su, Pan Hui

{firstname.lastname}@helsinki.fi

DISTRIBUTED SYSTEMS

Lecture 2 ς System architectures

Helsinki, Finland, 2019.

Recap

ÅFundamentals of distributed systems

ïConcepts

ïModels

Helsinki, Finland, 2019.

ARCHITECTURES

Helsinki, Finland, 2019.

Agenda

ÅUnderstanding different architecture
styles

ÅMapping a system to a model

ïState machine (Automaton)

Helsinki, Finland, 2019.

Architecture

ÅDefine the organization of a distributed system

ïInteraction

ïBehavior

ÅSoftware architecture

ïLogical organization and interaction of software
components

ÅSystem architecture

ïInstantiation of a software architecture on real
machines

Helsinki, Finland, 2019.

Architecture styles

ÅThe notion of an architectural style
ïFormulated in terms of components, their connections and

the data exchanged between them
ïA component is a modular unit with well-defined required

and provided interfaces, replaceable within its environment
ïA connector is a mechanism mediating communication,

collaboration, coordination or cooperation among
components

ÅImportant architectural styles for distributed systems
ïLayered architectures
ïObject-based architectures
ïData-centered architectures
ïEvent-based architectures

Helsinki, Finland, 2019.

Layered architectures

ÅComponent at layer Li is
allowed to call component
at the underlying layer Li-1
but not the other way around

ÅControl generally flows
from layer to layer
ïRequests go down
ïResults flow upward

ÅWidely adopted in
networking

Helsinki, Finland, 2019.

Layered architectures

Hybrid Internet protocol stack

ÅLayered networking architectures

ÅLayering allows mastering the complexity
ïExplicit structure allows identification, relationship of
ŎƻƳǇƭŜȄ ǎȅǎǘŜƳΩǎ ǇƛŜŎŜǎ

ïModularization eases maintenance, updating of system
Å/ƘŀƴƎŜ ƻŦ ƛƳǇƭŜƳŜƴǘŀǘƛƻƴ ƻŦ ŀ ƭŀȅŜǊΩǎ ǎŜǊǾƛŎŜ ǘǊŀƴǎǇŀǊŜƴǘ ǘƻ ǘƘŜ

rest of system

Helsinki, Finland, 2019.

Object-based architectures

ÅObjects correspond to
components

ÅComponents are
connected via a
(remote) procedure
call mechanism
ïRMI, RPC

ïWeb services
ÅREST, SOA

Helsinki, Finland, 2019.

Resource-centered architectures

ÅProcesses communicate through a common (passive
or active) resource, e.g., repository

ÅExamples

ïDistributed file systems

ïWeb-based data services

Helsinki, Finland, 2019.

Event-based architectures

ÅProcesses communicate through propagation of events
ÅEvents can optionally carry data
ÅPublish/subscribe systems
ïProcesses publish events
ïOnly processes having subscribed to particular events will

receive them

ÅAllows loose coupling
of processes
ïProcesses need not

explicitly refer to
each other
(referential decoupling)

Helsinki, Finland, 2019.

Shared data spaces

ÅEvent-based architecture
combined with data-
centered architecture

ÅProcesses are also decoupled
in time (they need not both
be active when
communication takes place)

ÅData can be accessed also
using a description instead of
explicit reference

 Helsinki, Finland, 2019.

System architectures

ÅCentralized architectures

ÅDecentralized architectures

Helsinki, Finland, 2019.

Comparison (Junginger & Lee, 2004)

 Feature Peer-to-peer Centralized

Scalability High Limited

Resource availability High Limited

Fault tolerance High Limited

Infrastructure Self-organizing Needs setup and
administration

Infrastructure costs Low High

Storage of global data No Yes

Control No Yes

Trusted No Yes

Enterprise/legacy
system integration

No Yes

Helsinki, Finland, 2019.

System architectures

ÅHybrid architectures

ïCentralized and decentralized

Helsinki, Finland, 2019.

Centralized architectures

Å Client-server model
ïServer (process) implements a specific service
ïClient (process) request a service from a server by sending a request

and waiting for a reply

Å Request-reply behavior

Å Call semantics and transmission
 failures
ï Ideally: exactly-once
ïZero-or-ƳƻǊŜ όάƳŀȅōŜέύΥ ǎŜǊǾƛŎŜ Ƴŀȅ ƻǊ Ƴŀȅ ƘŀǾŜ ƴƻǘ ōŜŜƴ ŎŀƭƭŜŘ
ïAt-least-once: keep requesting service until valid response arrives at

client
ïAt-most-once: no reply may mean that no execution took place
ï Idempotent vs non-idempotent operations

Idempotent (repeatable) operation can be repeated multiple
times without harm

 Helsinki, Finland, 2019.

Application layering

The general organization of an Internet search engine

Helsinki, Finland, 2019.

Application layering

Å User-interface level
ïTypically implemented by the client
ïConsists of programs that allow end users to interact with applications
ïGreat variation in functionality provided by user interfaces

Å Processing level
ïContains core functionality of an application

Å Data level
ïContains programs that maintain the data on which the applications

operate
ïPersistency
ïConsistency

Helsinki, Finland, 2019.

Multitiered architecture

ÅSimplest organization is to have only two types of machines
ïA client machine containing only the programs implementing

(part of) the user-interface level
ïA server machine containing the rest (programs implementing

the processing and data level)

Alternative two-tiered client-server organizations Fat clients ((d)-(e)) vs thin clients ((a)-(c))

Helsinki, Finland, 2019.

Multitiered architecture

ÅThree-tiered architecture
ïSingle server is replaced by multiple servers running on

distributed machines
ïServer sometimes acts as a client

ÅVertical distribution
ïLogically different components are placed on different machines

Helsinki, Finland, 2019.

Decentralized architectures

ÅPeer-to-peer systems
ïHorizontal distribution (in contrast to vertical distribution)
ïProcesses are equal (functions need to be carried out are

represented by every process)
ïInteraction between processes is symmetric (each process acts

as a client and a server at the same time ~ servent)

ÅRepresentation of peer-to-peer architectures using overlay
networks
ïNodes represent processes
ïLinks represent communication channels

ÅStructured vs unstructured peer-to-peer architectures

Helsinki, Finland, 2019.

Structured peer-to-peer architectures

ÅOverlay network is constructed using a deterministic
procedure

ÅDHT (Distributed Hash Table) is the most-used procedure
ïData items are assigned a random key from a large identifier

space
ïNodes are assigned a random number from the same space
ïEfficient and deterministic scheme uniquely mapping the key of

a data item to the identifier of a node using some distance
metric

ïWhen looking up a data item, the network address of the node
responsible for that data item is returned

ïMany DHT variations (e.g. Chord, CAN, Pastry, Bamboo,
Tapestry, Kademlia)

Helsinki, Finland, 2019.

Structured peer-to-peer architectures

ÅChord system
ïNodes are logically organized in a ring such that a data item with

key k is mapped to the node with the smallest identifier id ² k
ïThis node is called successor of key k, succ(k)
ïLOOKUP(k) returns address of succ(k)

ÅMembership management
ïEach node maintains shortcuts

to other nodes
ïJoining: create random node id,

data items associated with id are
transferred from succ(id)

ïLeaving: node id transfers its data
items to succ(id)

Helsinki, Finland, 2019.

Structured peer-to-peer architectures

ÅCAN (Content Addressable Network)
ïd-dimensional Cartesian coordinate space is completely

partitioned among nodes
ïEach data item is assigned a unique point in this space

(corresponding node is responsible for the data item)

Splitting a
region when
a node joins

Mapping
of data
items onto
nodes

Helsinki, Finland, 2019.

Structured peer-to-peer architectures

ÅDHT comparison (Hautakorpi & Camarillo 2007)

Helsinki, Finland, 2019.

Unstructured peer-to-peer
architectures

ÅOverlay network is constructed using randomized
algorithms, resulting in a random graph
ïEach node maintains a list of neighbors (partial view),

which is constructed in random way
ïData items are placed randomly on nodes

Helsinki, Finland, 2019.

